
 

Tying Requirements to Design Artifacts 
Clark Briggs Mark Sampson 

Jet Propulsion Laboratory UGS 
4800 Oak Grove Drive 5800 Granite Pkwy Building 1 

Suite 600 
Pasadena, CA 91109 Plano, TX 75024 

 
Copyright © 2005 by California Institute of Technology.  Published and used by INCOSE with permission. 

 
Abstract.  A new generation of Product Data Management and Product Lifecycle 

Management tools offer a combination of systems engineering and design engineering 
capabilities with a common database.  This provides the opportunity to tie requirements to 
elements of the design such as CAD models, drawings and analyses.  This connection of the 
currently disjoint systems engineering and design engineering modelling domains provides a 
new opportunity for a rich set of relationships and the promise of alleviating much of the tedious 
checking of requirements usually performed by design engineers.  This paper explores the use 
cases for joining systems engineering and design engineering modelling and proposes a set of 
relations that provide meaning to the new links. 

INTRODUCTION 
Integrated Product Design Teams (IPDTs) are a common organizational approach to product 

design and development in the aerospace and defense industry.  These multidisciplinary teams 
are staffed to address the many aspects relevant to development of the product from problem 
statement, to design, manufacture and operational use.  Systems engineers and design engineers 
are two engineering specialties in the IPDT that work closely together, iteratively developing the 
requirements, solution architecture, and system design. 

The interface between these two is the area we are addressing.  The problem statement for 
the design team is established by the systems engineers.  This consists of the requirements, the 
functions and perhaps the system architecture.  The design engineers establish early 
configurations, evaluate the performance and provide illumination to the requirements.  They go 
on to completely define the product and develop the fabrication specifications. 

We are interested in following a two typical, high value and intensive interactions between 
systems engineering and design:  1) establishing a requirements set to be used by design 
engineers to guide the product definition and 2) requirement verification during design 
completion and review. 

At the design gates, the state of the design is reviewed prior to moving into the next phase.  
In these reviews, the requirements are reviewed, the design is reviewed and the design is 
compared to the requirements.   

These practices are well known and in use in many aerospace and defense organizations, 
although implementation can be quite manual.  For example, the design engineers might be 
handed the lower level requirements extracted by the systems engineers from the requirements 
tool used by the systems engineers.  The design engineers keep, amplify and interpret these, 
managing them in their engineering notebooks.  At the design review, the design engineers 
prepare tables that show where the requirements they use came from, and how the design meets 
them.  This can entail quite a bit of work prior to the review and this section of the review can 

  



take 1 to 2 hours.  Our proposal is that an integrated tool can better carry this process, relieving 
the engineer of a tedious, manual and risky activity.   

A basic tenet of the approach is to link objects and have the link carry meaning.  There are a 
wide variety of objects in the union of systems engineering and mechanical engineering and so a 
wide variety of meanings can be given to the links.  We illustrate potential concepts with use 
cases and candidate linking relationships.  It is these links that give power to the resulting 
software system. 

The eventual software system will be used by IPDTs, in particular the system engineers 
working with the design engineers.  Of course, the difficulty presently is that few tools contain 
both the systems engineering and design models, and that interfacing existing single domain 
tools is difficult and costly. 

THE GOAL 
The product development process usually begins with input requirements such as customer 

specifications, standards, lessons learned, telephone conversations, etc.  We start the process by 
capturing these. When the customer says we need to do X, we start deriving new requirements—
if we need to do X then we also need to do this and this, which leads to new requirements. These 
in turn lead to other requirements. 

This “explosion” of requirements—a single requirement leading to thousands—is why you 
need systems engineering tools for organizing these requirements.  This pool of requirements is 
where the current requirement management tools live.   

As we develop these requirements, we start developing a list of features or functions that 
need to be built into our product.  We also start looking at alternative ways of accomplishing 
what we need to do.  While we are doing this, we need to consider other views of our system.  
See Figure 1.  We need to able to test it, make sure we can distribute our product, that we can 
support it in the field, that we can train people to use it, that we can manufacture it, that we are 
using the right materials, that our supply chain can support it, etc.  You can see here we are 
creating relationships between these different views so that the materials people, for example, 
can see what requirements are driving them because their material is used in a test set, which 
verifies a particular component, which performs a particular feature, which is driven by customer 
requirements.  Because they are related to each other, we can see how requirements flow 
throughout the entire product development process.  This way, the materials people are 
participating in the same product development as the rest of the team because the requirements 
are connected to them. 
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Figure 1. Integrated Systems Engineering and Design Engineering Models 

 

EXAMPLES OF LINKS AS UNDERSTOOD CURRENTLY 
A commonly cited example of linking requirements to design is to make a link to drawings in 

the Mechanical Computer Aided Design (MCAD) Product Data Management (PDM) system.  
This might convey any of several meanings and the appropriate meaning might change as the 
design matures.   

The drawing goes through a life cycle, at some point becoming released and possibly being 
revised.  As an indication of the conundrum we address in this paper, consider the question 
“Should the meaning of the link change when the drawing is released?” 

To appreciate the difficulty with the simple concept of linking requirements to drawings, 
consider the following example.  In subsequent sections, we will develop specific 
implementation proposals that address these issues. 

Consider a geometric design requirement such as 
“The Elbow Joint of the Instrument Arm shall have an operational angle of +/-75 degrees 
from straight.” 

This requirement will exist somewhere in the requirement hierarchy.  Since it is 
geographically narrow and specific to a single assembly’s function, it will be well down the tree 
and potentially a leaf.  The current notion is that a simple un-named, un-differentiated link or tie 
to a drawing is to be created.  

Let’s look at how the link might be used and examine the candidate meanings the link might 
carry in these use cases. 

Link Creation 
At some point in the design process, either the systems engineer or the design engineer will 

  



be ready to create the link.  This low level design requirement might not be known at proposal or 
conceptual design time, although the body of the requirement might be available with a “TBD” 
for the value of the angle.  Most likely, the requirement and an angle value will be available at 
the end of preliminary design.   

The drawing, however, is created quite late in comparison.  The project epoch “design 
release” or “release to manufacture” signifies completion of the drawings.  For this example, 
assume the drawings are in place during the latter stages of detail design. 

To which drawing should the link point the requirement?  This angle is best displayed on the 
Instrument Arm Configuration Drawing so that both the Upper and Lower Arm are displayed 
and the angle, along with its extreme values, can be called out.  With such a drawing, an engineer 
could review the configuration, find the angle and determine the limit values by inspection. 

In creating a link between this design requirement and this configuration drawing, what does 
the engineer mean to imply?  A minimal meaning might be “the implementation of this 
requirement can be found in this drawing by inspection.”  A more concise link label might be “Is 
Implemented In” but it more correctly means the requirement is implemented in the assembly 
displayed in this drawing. 

A link meaning of “Is Satisfied By” is more troublesome.  The engineer, in checking 
requirements, could begin at the requirement, follow the link to the configuration drawing, but 
would have to inspect the drawing, find the specific view showing the angle and its limits, and 
compare the limit values to the requirement values.  

“Satisfaction” is true only if the engineer’s study of the drawing leads to that conclusion.  In 
fact, the design may not meet the requirement at the early stages of design evolution.  This could 
be quite misleading at worse, or at best, require engineers to remember the link name isn’t its 
value.  Thus, over the life of the evolving design, engineers would need to revisit the drawing to 
determine by inspection whether the design “satisfies” the requirement.   

Requirement Verification 
At some point, perhaps in late detail design in preparation for the Critical Design Review, 

several forms of checking will happen.  The fact that all the requirements have been captured in 
the design will be checked and the design will be checked against the requirements.   

With an implementation that links the requirement to the drawing, much of the current 
manual effort and risk of administrative errors is reduced.  Considerable thoughtful effort 
remains, though, along with the potential for misunderstanding. 

In preparation for the review, the engineer might go one-by-one through the requirements, 
follow the link, open the drawing and determine a result by inspection.  The presentation 
material content and review time is essentially unchanged, but the effort and risk of 
administrative errors is reduced.  In this use case, the meaning of the link is more like “Can Be 
Found In.” 

The presence of the link (and correct creation of the link) supports automation of the check 
that the requirements have been captured in the design.  In this case the meaning is more like “Is 
Assigned To.”  Little more information value than that can be implied however. 

Thus, the tying of requirements to drawings with an un-named link can reduce manual effort 
and administrative errors, but does not add substantial information value.  In fact, it can increase 
misunderstanding because of the multiple unstated potential meanings of the link. 

The real value comes from creating specific link meanings that tie to low level design 
aspects.  Further, as we will see in subsequent sections, the link needs to carry computational 
capabilities to track satisfaction.  With this in place, not only is manual effort and administrative 

  



 

error reduced, but time spent reviewing and checking can be reduced.  During the design review, 
the engineer can simply display the report summary of satisfied and not satisfied requirements.  
The review board does not need to check the engineer’s methodology, nor check samples of the 
results to determine correctness. 

MEANINGFUL RELATIONSHIPS 
This section puts forth a variety of names for links.  We begin with listing terms commonly 

used in conversations.  This is a rich vocabulary but lacks any significant definition or clarity.  
Then we illustrate common administrative relationships that must be present in tools to support 
the broad set of infrastructure required but which aren’t relevant to the current discussion.  We 
close with a survey of relations from the few existing example schema which have some system 
engineering and design content.  The following section shows how the richer information model 
we seek can be used. 

 
Is Allocated To Supports/ 

Is Supported By 
Is Basis For/ 
Is Based Upon 

Is Implemented 
By/ Implements 

Relies On 

Uses/ Is Used By Is Satisfied By/ 
Satisfies 

Contributes To Is Necessary For Depends On 

Verifies Is Derived From/ 
Derives From 

Is a Copy Of Contains Is Rendered By/ 
Renders 

Manifestation Is Represented 
By/ Represents 

Is Linked To Is Assigned To References/Is a 
Reference Of 

Has Attachments Is Member Of    
Table 1. A Sample of Relevant Relations 

Table 1 is list of commonly used relations.  In most cases, they are bi-directional with 
slightly different syntax in each direction.  Most relationship names act like verbs and an object 
acts as the noun/subject and another object acts as the noun/objective.  In this paper, we will use 
notions such as left hand side for the subject and displays such as: 

left hand side: - relation -> right hand side 
which suggests that the relation is the name displayed on an arrow from the subject to the object. 

Existing design tool schemas have a wide variety of linkage mechanisms and many provide, 
from our current point of view, administrative semantics.  For example, a file server has folders 
and files.  Although it is not explicit, the relation between a folder and its files is “contains.”  In 
the Teamcenter Enterprise Product Data Management (PDM) system, the relationship between a 
Container and a DataItem is explicitly “Contains.”  Teamcenter Enterprise also has a “Is Copied 
From” relationship that is used for tying Copies to their Source.  (UGS Corporation, 2005)  Other 
administrative connections are simply named after the objects connected or are used to show a 
condition.  Teamcenter Enterprise has “Item to Vis” to connect a visualization file to its 
hardware Item and “Has Visualization Files” between more generic documents and 2-D 
drawings and images.  The Vitech CORE implementation of the Department of Defense 
Architecture Framework (DoDAF) schema says a Defined Term “Is Used In” a Document. 
(Vitech Corporation, 2004 and 2005) 

A few schema exist that contain some systems engineering and design artifacts.  Table 2 
shows part of the Vitech implementation of the DoDAF from CORE. (Vitech Corporation, 2004 
and 2005)  The DoDAF schema object set is of modest size and includes Requirements, 
Functions and Components.  The requirement hierarchy relates lower level Requirements to 

  



higher level Requirements through “Is Refined By.”  The physical hierarchy of Components is 
tied together with “Is Built From” going down and “Is Built In” going up. 

 
 Requirement Function Component 
Requirement refined by/  

refines 
basis of specifies 

Function based on decomposed by/ 
decomposes 

allocated to 

Component specified by performs built from/ 
built in 

Table 2. CORE DoD Architecture Framework Relations 

The connection to the physical architecture says a Requirement “Specifies” a Component and 
a Component “Is Specified By” a Requirement.  The Teamcenter Engineering data management 
system doesn’t have systems engineering objects but has a “Specification” relationship which is 
used to associate data such as Standards to which the Item must adhere. (UGS Corporation, 
2004) 

 
 Requirement Function Component 
Requirement «derive»   
Function «satisfy»   
Component «satisfy»  «assembly» 

Table 3. SysML Relations 

SysML and UML2, which SysML extends, have a very general object and relation schema 
more attuned to the software development domain where UML originated.  (SysML Partners, 
2005) See Table 3.  SysML adds the Assembly object which is a container for Parts.  The 
Requirement hierarchy uses “Is Derived From” which means a child refines or restates a parent 
Requirement.  “Satisfies” is used to indicate a dependency relation between a Requirement and a 
Part.  UML and SysML don’t provide standard names for relationships and expect users to 
provide problem-specific names for the actual relationships used in the model.   

AP-233, the STEP schema for systems engineering, provides a generic structure for a wide 
variety of systems engineering objects, but depends on other STEP APs, such AP-214, to define 
the physical structure. (Bailey, 2001)  For example in AP-233, entities in an Assembly are 
known as system_view_definitions which are linked together with 
system_assembly_relationships.  Like SysML, AP-233 expects users to provide problem-specific 
names for the actual relationships. 

NEW WORKED EXAMPLES 
The following continues the discussion of tying requirements to design artifacts, but 

considers various types of requirements.  The goal is to develop link meanings and to further 
specialize the implementation notion of design artifacts. 

Functional Requirements 
Functional requirements might well be “Allocated To” a Function which is “Implemented 

By” some hardware.  For example, “The message processing subsystem shall decode and verify 
all incoming messages” might be allocated to a Function Block named Decoder which is one 

  



 

Function Block in a Message Processing Subsystem Functional Block Diagram.  See Fig. 2.  
This Decoder Function Block might point to a Bill of Materials (BOM) Item which is the top 
level assembly in the mechanical CAD model for the chassis that holds the Decoder.  That 
relationship is “Is Implemented By.”  See Fig. 4.  If the model doesn’t use the Function Block, 
the Requirement is related to the BOM Item with the “Is Implemented By” relationship. 
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Figure 2.  Message Processing System Partial Functional Block Diagram
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What can you learn by following this small graph up and down?  Suppose the Decoder BOM 

Item is part of a higher level assembly that is the Message Handler.  That is, the Message 
Processing Subsystem has a Message Handler, a Message Distribution Control and multiple 
Execution Units.  The Decoder is a part of the Message Handler.  Each of these is one or more 
boards in the hardware set that implements the subsystem. See Fig. 3.  

Suppose the question concerns the design capabilities required on the board that hosts the 
Decoder.  Start with the Message Processing Subsystem, drill down its assembly hierarchy in the 
MCAD models and find the board named Decoder.  Find the relationships named “Is 
Implemented By” for which it is on the right.  Follow those to the left and find a Function Block 
or one or more requirements.  See Fig. 5. 
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Figure 5.  Finding a Processor's Function
 

Suppose the question is where is the requirement reflected in the design?  Start with the 
requirement and find the relationships for which it is on the left.  There might be many such 
relationships, but look for the two used here.  If you find “Is Allocated To,” follow it to find the 
Decoder Function Block.  Inspect the Decoder to find its relationships and look for the “Is 
Implemented By.”  The right side of that should be a BOM Item which answers the question.  It 
could have been that the Requirement itself had an “Is Implemented By” relationship, in which 
case, you can get to the Decoder BOM Item directly. 

Suppose you are studying the Functional Block Diagram for the message Processing System.  
You can find the requirements that have been “Allocated To” its Function Blocks.  In the 
Message Processing Subsystem Functional Block Diagram, start at the top Function Block and 
drill down to the Decoder Function Block. Check the relationships for which it is the right side, 
looking for “Is Allocated To” relationships.  One of these should have a left side that is the 
requirement for a decode function.  If you wanted to know which BOM hardware Item 
implements this requirement, look for “Is Implemented By” relations on the Decoder Function 
Block and find one that points to the Decoder BOM Item. 

Performance Requirements 
Suppose the requirement on decoding throughput reads “The decoder shall be able to sustain 

100 messages per second.”  This looks like a performance requirement.  We need to be able to 
drill down to an analysis report on the Decoder BOM Item and find a field with the computed 
throughput.  A good name for that pointer/relationship might be “Is Supported By.”  

Notice that performance requirements like this might be demonstrated in the Functional 
model.  That is, the Functional Block Diagram might have a behavioural simulation and the 
analysis report from the behavioural simulation might produce a value for comparison to the 
performance requirement.  This value isn’t different in any substantive way than the analysis 
based upon the hardware design. The latter may have more fidelity, but neither is a measured 
value, both are predicted values.   

  



 

Performance Requirement: - Is Supported By -> Behavioural Analysis Report Result 
Performance Requirement: - Is Supported By -> Hardware Analysis Report Result 
Performance requirements might point to analysis reports that predict the performance, but 

there might be tests that measure the performance.  The test article might be the production item 
or it might be some test article, prototype, or engineering model.  It may be a close representation 
of the production article or it might even be a production article (in the case of a proof test).  The 
test articles might only be partially representative of the design since they might be testing only 
part of the system or performance.  The test setup might only test part of the operational 
behaviour, such as a vibration test for launch loads.  One point of this is that test data is no more 
“proof of performance” than analysis.  The relationship between a performance requirement and 
an analysis result should be the same “Is Supported By” meaning as between a performance 
requirement and a test result. 

Design Requirements and “Is Implemented By” 
Consider the geometric design requirement 

“The Elbow Joint of  the Instrument Arm shall have an operational angle of +/-75 degrees 
from straight.” 

This might well be a derived requirement that was generated from early studies of 
operational scenarios for the Instrument Arm that considered stowing, reach and coverage for 
sampling and delivery of the sample to the on-board processing unit.  So it will be part of the 
requirement hierarchy somewhere below a top level requirement such as 

“The System shall support a Sampling Instrument Package.” 
This is the type of requirement that we would really like to automate the management of.  It’s 

a good one for the “Is Implemented By” relation: 
Requirement: - Is Implemented By -> BOM Item 

For this example, the BOM Item would probably be the Instrument Arm top level CAD 
assembly.  It could be some higher assembly such as the Instrument Package or even the System, 
but it becomes less helpful.  We would actually like the right hand side of this relation to be a 
feature in the Arm BOM Item MCAD model. 

MCAD assemblies can have a variety of structures and the angle of a joint that supports the 
Upper Arm and Lower Arm could be in a couple of places.  It could be in the mate constraint 
between the Upper Arm and the Lower Arm or it could be in a skeleton or active layout.   

At any given time, this angle could have a value between its limits that is set by the 
configuration.  We really want to point the requirement at the limits, not the current value.  
Further, this requirement must be broken into two requirements: 

“The Elbow Joint shall have an inner operational angle limit of +75 degrees from 
straight.” 

And 
“The Elbow Joint shall have an outer operational angle limit of -75 degrees from 
straight.” 

Both of these can be found in the upper and lower limits of the constraint, either in the 
skeleton or the mate.  The constraint in the skeleton might be a different feature type than that of 
the mate.   

It is a human that makes these connections.  Suppose the designer has constructed the MCAD 
model which is the BOM for the Instrument Arm.  A system engineer, a mechanical system 
engineer or the designer might be connecting the requirements to the BOM.  Finding the 
appropriate right hand side for the relation is a visual activity.  Given the pair of limit 

  



requirements, the engineer drills down through the Instrument Arm MCAD model to find the 
feature or mate.  Notice that several things must be modelled in a consistent manner.  The angle 
coordinate system in the MCAD model must be zero when the Lower Arm and the Upper Arm 
are straight. The angle must be positive when the arms fold in and negative when the arms fold 
out.  Here, in and out are conventions that the design team must adopt.  The engineer making the 
connection must recognize and check these. If the expression of the requirement and the design 
of the MCAD model don’t match, things must be fixed. 

A COMPUTATIONAL CAPABILITY FOR LINKS 
In addition to describing the meaning of the link, the link might carry state or value.  The 

most common place to think of this is the “Is Satisfied By” link between a requirement on the 
left and a physical implementation on the right.  As mentioned in a previous example, simply 
naming a link “Is Satisfied By” is misleading since there is no guarantee that the design element 
carried by the right hand side in fact “Satisfies” the requirement.  At various stages of the design 
life cycle, the design may not, in fact, meet this requirement.  Unless meanings like this are 
augmented by a value, the meaning is no more than “satisfaction can be determined by manual 
inspection of the contents.” 

In this section, we explore the nature the computational capability required and the 
consequences of providing it. 

If links are to carry a value in support of an “Is Satisfied By” relation, the simplest 
computational point of view is the link acts like a relational operator which returns a True or 
False result.  “Is Satisfied By” has this behavior.  The angle requirement on the Instrument Arm 
Joint read:  

“The Elbow Joint shall have an inner operational angle limit of +75 degrees from 
straight.” 

The link was created perhaps by the systems engineer or the design engineer by interactively 
drilling down to the Instrument Arm Configuration Drawing and finding the Angle Upper Limit 
call out on the drawing.  The MCAD system clearly knows the numeric value of this Angle Limit 
even if it is displayed as text on the Configuration Drawing. 

The requirement is typically stored as a text string since current practice is that all content 
evaluation is provided by human interpretation upon reading.  If, in the link creation activity, the 
engineer selects the text of the value (ie, “+75”) as the left hand side, a computational 
comparison is possible.  The link computational processor can use normal arithmetic operations 
to promote the string to a numeric value for comparison to the right hand side numeric value 
pointed to in the Configuration Drawing.   

But what is the computational relation?  In this case, the implementing engineer understands 
the requirement and how it is mapped to the configuration and can choose from the usual pallet 
of relational operators such as “<”, “<=”, “=”, “=>”, and “>”.  A strict interpretation of the 
requirement calls for an equality check as in “=” but this is computationally and logically risky.  
The engineer needs to seek clarification and refine the requirement to something more readily 
implemented such as: 

“The Elbow Joint shall have an inner operational angle limit of not less than 75 degrees 
from straight.” 

With this clarification, the operator “<=” is appropriate.  If the design currently has the Angle 
Upper Limit set at 77 degrees, the resulting expression reads: 

The Elbow Joint inner operational angle limit of 75 degrees is less than or equal to the 
Angle Upper Limit call out of 77 degrees. 

  



 

The computed result will be True which means the design “Satisfies” the requirement.   
Should the design change to where the Angle Upper Limit falls to 73 degrees, perhaps due to 

a volume conflict in the elbow or a collision at the Lower Arm outer end when stowed in this 
inner limit position, the computed result will be False.  This signifies that the design does not 
“Satisfy” the requirement. 

Thus, the system could always provide the computational result with the link name.  This 
both avoids misunderstanding and significantly reduces the effort required to determine if the 
design “Satisfies” the requirement.  In particular, it is not necessary to open the model in the 
MCAD tool or know how to use the MCAD tool.  Further, report operations in the PDM can 
tally the status of “Satisfaction” of a set of requirements without further mechanical engineering 
domain knowledge. 

As noted, during the early stages of development, the requirement might have a “TBD” value 
as in:  

“The Elbow Joint shall have an inner operational angle limit of not less than TBD 
degrees from straight.” 

If this value is present in the requirement when the engineer is creating the link, the engineer 
should proceed as before selecting the text “TBD” for the left hand side.  The relation processor 
will not be able to convert this to a numeric value and should produce a result of the comparison 
like “Unknown.”  Such tri-state arithmetic, as opposed to two-state or Boolean arithmetic, is 
readily accommodated.  This enables PDM reports that tally the number of “TBD” requirements 
which is a common metric for design completion during the preliminary design phase. 

Performance requirements can be implemented in a similar fashion.  A requirement might be:  
“The decoder shall be able to sustain 100 messages per second.”  

The subsystem analysis report will contain a variety of information supporting and 
substantiating the analysis.  Somewhere in the report, text such as the following will exist: 

“Using the model described above, the worse case throughput results for the 3 required 
scenarios are as follows. 

Case  Messages per Second 
Case 1 121 mps 
Case 2 107 mps 
Case 3 144 mps 
Limiting Speed 107 mps 

Table 23. Case Summary 
As shown in the table, the decoder worse case speed over these scenarios is 107 messages 

per second.” 
When making the link between the requirement and the analysis report, the engineer will 

choose the requirement text “100” for the left hand side and the text “107” from the row of the 
results table labeled “Limiting Speed.”   

Other discussion in the text might lead to a lower value, for example, when factors of safety 
are applied and that text can be chosen instead.  Looking ahead to updating the analysis, it is 
desirable to pick up text fields that the report generator will recompute to avoid manual steps.  
For example, suppose the report went on to say: 

“Applying a factor of safety of 1.10, the current design does not have enough speed 
margin.” 
With this text, the desired value isn’t even present, and, if it was, the report generator isn’t 

likely to recompute it. 

  



This leads to a desire that the link computational engine allow expressions in the left and 
right sides of the relation.  Thus the requirement field might be compared to an expression made 
from the table entry and the factor of safety.  It would be helpful if the text value of the factor of 
safety in the preceding paragraph could be labeled with the name “Factor of Safety” and the table 
entry labeled with “Worse Case Value” such that the link relation right hand side could be the 
expression “Worse Case Value / Factor of Safety.”  Thus the report generator would update the 
table and the link computational engine could recompute the value of the link condition. 

BUILDING REQUIREMENTS INTO THE DESIGN 
Modern MCAD systems are parametric and associative.  This allows related geometric 

features to depend upon each other such that aspects of the design are automatically enforced.  
Mating conditions such as point-in-plane and axes-collinear implement geometric design 
intentions.  Dimensional constraints such as making the length of a horizontal side equal to half 
the length of the vertical side also express design intentions. 

Consider again the Instrument Arm Angle Inner Limit requirement: 
“The Elbow Joint shall have an inner operational angle limit of not less than 75 degrees 
from straight.” 

When the design engineer is constructing the skeleton layout that drives the Configuration 
Drawing, a construction line is usually built to represent the limit and its angle to straight is 
manually entered into the construction.  In a parametric MCAD system, the engineer can access 
that value, change it to “70” and the line representing the limit will be repositioned.  In the prior 
discussion on computing the “Satisfaction” of a requirement, this value was the right hand side 
of the relation. 

Suppose instead of manually entering the value “75,” the engineer tied the value to the 
requirement.  This might be done interactively, when the construction line’s angle value field is 
open for editing, by drilling down to the requirement and selecting the text field “75” in the 
requirement.   

The result, then, is that the geometry of the design is dependent upon the requirement. 
This changes the entire notion of linking requirements to the design artifacts.  Artifacts are 

built out of, or built upon, requirements.   Such requirements can never be violated.  There is no 
need to check for “Satisfaction.”  Furthermore, should the requirement be changed, say to an 
inner limit angle of “72 degrees,” the geometry engine will update the design. 

This leads to multiple approaches to using requirements in the design of the Instrument Arm 
configuration and components. 

• The limit value can be a static call out on the configuration drawing and the 
requirement text can be checked against it. 

• The limit value can be tied to the requirement text and driven by the requirement text.  
Checking the angular position of the limit is never required. 

• The geometry engine can use the Assembly Configuration to determine the inner limit 
by, for example, driving the angle until the Elbow binds or the outer end of the Lower 
Arm hits something.   This computed value could be checked against the requirement 
text value. 

DESIGN CHANGES AND MODEL UPDATING 
Building associative geometry models is a significant labor saving capability of current 

MCAD systems.  The design engineer builds design intent into the constructed geometry in such 
a way that the design is durable to certain changes.  This capability has been implemented into 

  



 

some analysis tools which can automatically accommodate changes to the analyzed geometric 
design. 

Suppose a component stress requirement was: 
“Under loads of 20g in any direction independently, the stress shall be less than the 
material yield stress with a factor of safety of 1.20.” 

The analyst would build a finite element model from the design geometry, make multiple 
load cases covering the stated “any direction” requirement, and capture the worse case stresses in 
a table in the report.   When the part design geometry changes, the analyst can use the analysis 
tool to accept the design model changes, rebuild the mesh, resolve the equations and update the 
report.  Depending upon the severity of the design geometry changes, the analyst may not need 
to do anything other than accept the automatic changes and authorize the update run.  

Using the prior requirement computational capability, the requirement engine could re-
evaluate the “Satisfaction” of the requirement.  The requirements maintenance engineer might 
trigger the engine to re-evaluate the requirements when an update notice was delivered indicating 
that the design artifact on the right hand side of the requirement had been changed.  Given that 
the fields in the analysis report had been labeled and the labeling preserved when the Analysis 
Report Wizard reconstructed the analysis report, the requirement engine could readily recompute 
the “Satisfaction” metrics. 

Of course, the changes could have been so significant that associativity was damaged.  The 
analyst might have changed the analysis report structure and deleted the body sections with the 
labeled result fields and not tied the requirement right hand side back to some other appropriate 
text to repair the damage. 

In another change scenario, the requirement might have changed.  The analyst would be 
notified that a driving requirement had changed and, upon study of the change, altered and rerun 
the analysis.  As above, it could be that the requirement changed in simple ways that did not 
require manual intervention or repair.  But it could have changed in structure such that the 
analysis was significantly altered.   The analyst would probably need to rebuild the link between 
the requirement and its value fields and the analysis report and its value fields. 

In either case of a changed requirement or a changed report because of a design change, the 
PDM reporting system can tally the number of changed requirements that had not been reflected 
in design changes or analysis changes.  It could report the number of changed requirements that 
resulted in new “Dissatisfaction” values after the analysis reports had been updated. 

LIFE CYCLE CONSIDERATIONS 
MCAD and PDM systems provide configuration control for the design CAD models as well 

as the analysis models.  This is done by making the BOM Item revisionable.  That is, the BOM 
Item has alpha numeric descriptors to denote its version.  Version numbers increase as the design 
evolves.  At appropriate change events, the design engineer will close the current revision which 
captures the state of the design before engaging in the design change.  The next revision will be 
used to capture the evolution of the design as the design team attempts to accommodate the 
required change. 

The design engineer can use the PDM to control the state of a design session.  The design 
BOM can be reconstituted as of any prior revision, or design on certain portions of an assembly 
can proceed while other portions are held at a fixed revision.  The latter effectively isolates one 
part of the design team from changes induced by another part of the team.  The lead design 
engineer will then call for reconciliation of such changes at epochs known as “baselines.” 

It will undoubtedly be the case that the requirements hierarchy will change at a different pace 

  



than the design.  The requirements engineers will be actively refining the requirements and, at 
occasions that suit their progress and milestones, establish revision baselines.   

The design engineers will similarly be evolving the design, establishing revisions and 
baselines as suits their environment.   To isolate the two groups from daily changes, the design 
engineers would work to a given requirements baseline.  Thus, for short periods, the 
requirements to which they work would not change and the design team could focus on 
achieving a given design that more or less appropriately meets the requirement baseline. 

To do this, the design engineers would use revision rules that configure the requirements 
database to the current requirements baseline.  The link computational engine would use the 
requirements database configured to that requirements baseline to determine the left hand side of 
the link relations.  Similarly, the design BOM would be configured by revision rules that picked 
the current design baseline.  The PDM reports that captured metrics would be associated with 
this requirement baseline and that design baseline. 

Suppose the design team completed a design epoch and created a new design baseline.  To 
continue working to the evolved, but not considered, requirements, the requirement revision 
rules would be changed to use the requirements baseline built from the next requirements 
revision.  The link computational engine would recompute the “Satisfaction” metrics and the 
PDM report engine would show the design team where the design “Satisfied” or failed to 
“Satisfy” the evolved requirements.   

CONCLUSION 
By implementing systems engineering and design engineering tools in a common database, 

significant improvements can be found in tying requirements to design artifacts.  Connecting 
them with simple links provides some labor savings and risk reduction, but more substantial 
savings will result from implementing a semantic net using named relationships.  This allows 
users to automatically detect and verify compliance.  We illustrated this with the “Is Satisfied 
By” relationship for several design and performance requirements. 

Providing computational capabilities for links can lead to significantly reduced manual effort 
and misunderstanding.  Extending the notion of associativity to these links will let the PDM 
report engine provide metrics that track the up-to-date status of the database.  Going further to 
build the requirements into the design basis removes all checking and drives the design from the 
requirements. 
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